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The PSAM (Probabilistic Structural Analysis Methods) program, funded by NASA Lewis
Research Center, is developing a probabilistic structural risk assessment capability for the SSME
components. PSAM is currently in the seventh year of a two-phase, ten-year contract. An advanced
probabilistic structural analysis software system, NESSUS (Numerical Evaluation of Stochastic
Structures Under Stress), is being developed as part of the PSAM effort to accurately simulate
stochastic structures operating under severe random loading conditions.

A central part of the NESSUS system is a finite element analysis (FEA) module. FEA is
generally known to be computer intensive. Thus, the conventional Monte Carlo method, which
requires a large number of simulations (i.c., a large number of deterministic computer runs), is too
time-consuming to be practical for probabilistic FEA analysis. One of the major challenges in
developing the NESSUS system is the development of the probabilistic algorithms that provide
both efficiency and accuracy. The main probability algorithms developed and implemented in the
NESSUS system are efficient, but approximate in nature. In the last six years, the algorithms have
improved very significantly.

In probabilistic FEA analysis, a good index for measuring the computational efficiency is the
number of deterministic solutions required for the user-selected performance function. To minimize
this number, denoted as M, the first approach taken by PSAM was 10 generate a response surface
over a "wide" range (say, + 3 standard deviations for each random variable). Once the response
surface is generated, a fast probability integration (FPI) algorithm [Ref. 1] can be used. In practice,
when the number of random variables is not small, M might be too large, and the FEA part tends
to dominate the total computational time. Moreover, the response surface approach does not
generally provide sufficient accuracy unless an expensive iterative procedure is apphed to update
the response surface at focused regions [Ref. 2].

Toimprove the efficiency, the concept of FPI was applied directly to guide the FEA to develop
a good approximate performance function. The basic concept is to use the initial information from
the conventional mean value first order (MVFO) solutions to identify regions that are
probabilistically more likely for the given performance function values, then move the FEA to these
regions. MVFO requires (n + 1) deterministic solutions, where 2 is the number of random variables,
and provides approximate mean and standard deviation for the performance function. However,
in probabilistic structural analysis, it is more desirable and often necessary to have knowledge in
the whole distribution function (CDF). The advanced mean value (AMV) method was developed
to provide the guidance for the FEA "move," and for efficiently generating performance CDF based
on the MVFO solution [Refs. 3, 4]. The AMV method has been found to be quite effective for a
wide variety of engineering problems. Further procedures requiring more M were also developed
to improve the accuracy of the AMV method. In summary, M = n + 7 is believed to be the minimum
number required to obtain reasonably accurate probabilistic output that includes the performance
CDF, and the probabilistic sensitivity factors for the input random variables.

121



In addition to the AMV-based methodology development, the probability algorithms have also
been improved for problems with closed-form performance functions. The original FPI algorithm
[Ref. 1] has proved to provide a good approximate solution. However, the drawback is that it tends
to run into numerical problems when the input random variables are highly non-normal or have
very large coefficient of variations. To solve the problem and to further improve the accuracy, the
FPI algorithm has been enhanced recently by combining the linearization concept developed in the
original FPI with the fast convolution method [Ref. 5]. The fast convolution theorem provides an
exact CDF solution if the performance function can be expressed by a sum of random variables.
The combined analysis procedure includes three steps: (1) establishalinear or quadratic performance
function based on the AMV-based procedure, (2) transform the quadratic function into a linear
function (if the function is quadratic), (3) apply the convolution theorem to compute the performance
CDE. In the last step, a procedure based on the discrete, fast Fourier transform (FFT) technique
has been developed to speed up the convolution calculations. In summary, the current NESSUS
probabilistic analysis procedure combines the AMV-based method with the fast convolution
method. The AMV-based procedure generates linear or quadratic performance functions, and the
fast convolution method takes the polynomial performance functions and generates probability
solutions.

The PSAM program is moving into the area of system risk assessment. The methodology
currently under development includes system reliability analysis that deals with multiple failure
modes and multiple components. Here, the challenge is to accurately and efficiently evaluate
probabilitics associated with joint and conditional events. An efficient adaptive importance
sampling method is being implemented in the NESSUS system. The method was originally
developed for probabilistic rotordynamics analysis under a project funded by the NASA Marshall
Space Flight Center [Ref. 6]. It is anticipated that other system reliability analysis tools will be
developed and implemented in the NESSUS system based on a fault-tree type analysis framework.
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Establish CDF Using Fast
Probability Integration Algorithm

« Define Limit-State

+ Approximate Performance Function

At One or More Probabillity Significant Regions Joint Probability Density

» Compute Probability Based on Approximate Functions

ADVANCED MEAN VALUE (AMV) METHOD

« Conventional Mean Value First-Order (MVFO) method

First-order Taylor's series expansion at mean values:
Z=a,+XYaX(=2)

Valid for small standard deviations,

- Advanced Mean Value (AMV) First Order Method

Z2'=2Z,+H(Z,)
Features:

- H(Z,) introduced to minimize fruncation error.
- lteration procedure available to find H(Z,).
- Can be used to detect non-monotonic functions.
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AMV - Based Iteration Procedure

{teration Algorithm Il
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AMV EXAMPLE: RANDOM VIBRATION

Monotonic Performance Function
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AMV EXAMPLE: RANDOM VIBRATION

(Thousonds)
FREQUENCY, HERTZ
4] MVYFO + ADLAVED
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Fast Convolution Procedure

1. Dependent Non-normal RVs to independent Std. Normal RVs.
2. Find Most Probable Point and Construct Second-order Approx.
3. Eliminate Product Terms by Orthogonal Transformation.

4. Transform to Linear Polynomial.

5. Apply Convolution Theorem.

Fast Convolution

« SUM OF INDEPENDENT RANDOM VARIABLES

Z=X,+X,+... +X;+...+X

« CHARACTERISTIC FUNCTION
d(w) = f- fix)e' " dx
D, () = Py (W) (W), (1)

« USE FAST FOURIER TRANSFORM TO COMPUTE ®(w)
. USE INVERSE FTT TO COMPUTE PDF OF 2

* FOR NON- LINEAR Z, USE MPP, QUADRATIC APPROXIMATION AND
INEARIZAT!
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Linearization

" N L] R a -1 . o
g,u)=a,+ ‘g,l a;(u,—u) +'§ b,(u,—u, )2 +i§ E' (= u ) (u;—uy)

- QUADRATIC APPROXIMATION AND LINEARIZATION

= ; x;+b, 2 P 2
g(X)_a,+‘§la,x, i c=a _l T f'_
° % 4. b
i 2
= a
i

* LOG-TRANSFORMATION

gX)=a,+ f: a,Inx, + b(Inx,)’
i=1
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Fast Convolution Example

Z=R-S
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Fast Convolution Validation Problem

Random variable S has bi-modal pdf:
_[a 5—p1 b-a S$—u2
so- (PSR ae
Limit state function: /\,
g= R-S=0 )

Strength: R-~Lognormal~(20., 5.)
Stress: S~Bi-modal~(u1, p2, 61, 62) = (10, 2, 40, 2)

Probability of failure:

a b Exact Previous Method improved Method
19 20 6.331E-2 8.29E-2 6.285E-2
99 100 | 2.307E-2 Numerical Problem 2.347E-2

SYSTEM RELIABILITY ANALYSIS METHODOLOGY

Top Event
—— COMPUTE: .
Pl(g;<0) U (9,<0)

@ U ((g;< 0)n(g < 0))]
C) G Gy
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ADAPTIVE IMPORTANCE SAMPLING METHOD FOR
SYSTEM RELIABILITY ANALYSIS

METHODOLOGY
u,;
u
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for Multiple Limii States

ADAPTIVE IMPORTANCE SAMPLING METHOD FOR
SYSTEM RELIABILITY ANALYSIS

ROTORDYNAMICS EXAMPLE
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